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The unsteady viscous incompressible Navier-Stakes flow in a driven cavity is studied with 
particular attention to the formation and evolution of vortices and eddies. These are com- 
pared in the limit to previous steady flow simulations. Results include new details of the 
dynamics of secondary eddy separation and subsequent coalescence into subprimary vortices, 
and the tine structure of deep cavity flow. Enhanced flow topography is obtained by means of 
pressure and kinetic energy portraits. 0 1986 Acadcmlc Press, Inc. 

1. INTRODUCTION 

Flow in a rectangular cavity with the motion driven by the uniform translation of 
the top lid occupies a position of considerable theoretical significance within the 
larger class of separated flows. Below in Table I may be found a brief summary of 
some of the important representative studies. There are many others, most of which 
may be found from the references of the studies cited in Table I. 

Early numerical simulations of two-dimensional Navier-Stokes flows within a 
cavity tended to focus on the ambulatory nature, with respect to Reynolds num- 
bers, of the primary vortex in a steady flow. In particular, in an early paper 
Kawaguti [ 131 experimented for a small range (Re < 64) of Reynolds numbers in 
cavities both deep and shallow. His observations included the downstream drift 
w.r.t.-Reynolds number of the primary vortex center, in addition to the formation of 
corner eddies in the deep cavities. By 1966 Burggraf [S] had shown that the 
numerical integration of the steady Navier-Stokes equations for a square cavity 
yielded a large primary vortex near the center of the cavity, along with two secon- 
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TABLE I 

Representative Cavity Flow Studies 

Study Flow Formulation, Method 

Kawaguti [ 133 
(1961) 

Moffatt [ 143 
(1964) 

Burggraf [ 51 
(1966) 

Pan and Acrivos [ 51 
(1967) 

Bozeman and Dalton [4] 
(1973) 

Benjamin and Denny [ 31 
(1979) 

Steady, 
linear 
Steady, 
linear 
Steady, 
linear 
Steady, 
linear 
Steady, 
nonlinear 
Steady, 

Gatski, Grosch, and Rose [6] 
(1982) 

Ghia, Ghia, and Shin [7] 
(1982) 

Schreiber and Keller [ 17, 183 
(1983) 

Unsteady, 
nonlinear 
Steady, 
nonlinear 
Steady, 

Agarwal [ 1 ] Steady, 
(1984) nonlinear 

Stream function, vorticity; 
Finite difference method 
Stream function, theoretical; 
Similarity solutions 
Stream function, vorticity; 
Relaxation 
Stream function, experimental; 
Relaxation, localization 
Stream function, vorticity; 
Implicit finite differences 
Stream function, vorticity; 
False transients 
Velocity, voticity; 
Compact finite differences 
Stream function, vorticity; 
Multigrid, tine mesh 
Stream function, vorticity; 
Newton, continuation 
Stream function, vorticity; 
Third order, upwind differencing 

dary eddies near the bottom corners. This was shown for a range of Re between 0 
and 400. Subsequent works of Benjamin and Denny [S], Ghia, Ghia, and Shin 
[7], Schreiber and Keller [17, 181, and Agarwal [l] revealed tertiary corner 
eddies for large Reynolds numbers. 

Pan and Acrivos [ 151 produced experimental results for a range of rectangular 
sites. More recent visualizations of the cavity problem (Taneda [ 191, see also Van 
Dyke [21]) exhibited separating stream lines for a range of geometric con- 
figurations. The existence of a sequence of eddies of decreasing relative strengths 
was shown to occur near sharp corners, corresponding to the theoretical 
investigations of Moffat [ 141 on Stokes flows. For a recent survey of corner eddy 
theory for steady Stokes flow, including the effect of mass injection, see Jeffrey and 
Sherwood [12]. See also Gustafson and Leben [11] for a comparative multigrid 
study of finer corner eddies of steady flow. 

As may be noted from Table I and the above discussion, the preponderance of 
studies to date have dealt with the steady formulation of the problem, and most 
used the stream function, vorticity variables. Our first goal was to implement a 
study of the full unsteady problem in the primitive variables pressure and velocity 
with emphasis on the dynamic development of corner vortices especially as depen- 
dent on Reynolds number and cavity aspect ratio. A second goal was to time march 
the full unsteady equations to a “steady state” in cavities of various depths and for 
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different Reynolds numbers for comparison to the previous steady flow calculations. 
A third goal was to examine the interaction between Reynolds number and non- 
linearlity. Overall, we wished to generate extensive new portraits of the evolving 
vortex dynamics. In all of the figures presented in this paper, the velocity and 
pressure gradients were normalized by dividing by their magnitudes, to emphasize 
the qualitative development. 

2. NUMERICAL FORMULATION AND BASIC RESULTS 

The recent appearance of the excellent treatments by Peyret and Taylor [ 163, see 
also Thomasset [20], especially for finite element methods, provides adequate 
detailed discussions of the cavity flow problem. See also the papers referenced in 
Table I. 

2.1. Some Preliminary Clarifications 

We will always consider a two-dimensional cavity with lid under uniform trans- 
lation to the left as shown in Fig. 1. Results typical of our flow portraits, to the 
elaborated upon in this paper, are shown in Fig. 2. 

There are several variations on this basic problem which should now be men- 
tioned. First, some studies move the lid to the right. Second, some studies have 
smoothed the singularities at the lid corners, e.g., as is done in Peyret and Taylor 
[16]. This appears to have negligible effect on the internal and lower qualitative 
features of separation and eddy formation. Third, there is the driving of the cavity 
by a continuous fluid rather than lid travelling over the top of the cavity. Although 
this causes a slight downward pressure on the streamlines near the top of the cavity, 
e.g., see Azmy and Dorning [2], so long as the fluid densities are not different it 
appears to produce no dramatically different effects either in the simulation or in 
physical experiments (Taneda [ 191; see also Van Dyke [ 21 I). 

2.2. Primitive Variable Scheme 

The viscous incompressible Navier-Stokes equations 

v,-&Iv +(V-V) v= -vp (2.1 

v- v=o (2.2 

1 

in the cavity were discretized on a uniform grid using a MAC (marker and cell) 
scheme. The initial condition of the cavity problem is characterized by an 
everywhere zero velocity field, except for the top layer which is moving to the left at 
unit velocity. 
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v = (O,O) 

FIG. 1. Driven cavity, aspect ratio A = 1 

FIG. 2. Typical flow portraits. Reynolds number Re = 400, aspect ratio A = O/W= 1, time t = 25.5 S, 
flow is almost steady. Velocity and pressure gradient amplitudes are noramlized to better reveal the 
qualitative features of simulated flow. The kinetic energy contours shown here lie within the window 
from 0.00 to approximately 0.01, with labels scaled by O.lE+ 06. (a) Velocity. (b) Pressure gradient. (c) 
Kinetic energy. 
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“i,J+l v-t ‘i,j 
.‘l,j ‘i+l,j 

FIG. 3. Computational cell and variable loci assignments. 

The two-dimensional version of Eqs. (2.1) and (2.2) expressed in conservative 
form in terms of the individual components is given by 

(2.3) 

(2.4) 

24, + uy = 0. (2.5) 

In the MAC discretization scheme we construct N computational cells in the x- 
direction and M computational cells in the y-direction. The pressure value pLj for 
the i- jth cell is kept at the center of that cell. The midpoints of the left and right 
vertical boundaries of each cell are used for the x-directional velocity component U, 
while the midpoints of the horizontal boundaries are used as sites for the y-direc- 
tional velocity component u. In this way we obtain an (N+ 1) x M array of u 
values, an (M + 1) x N array of u values, and an N x M array of pressure values p. 
The assignment of these loci is shown in Fig. 3. For the sake of simplicity, let 
FUI+ 1.j and FV;'+ 1 represent the finite differencing of the combined advection and 
viscous terms -(u2L - (4, + (l/Re)(u, + uyy) and - (uu), - (u2), + (We) 
(u,, + uYY), respectively, at the nth time step. Then in the MAC scheme we have 

FU;, I,j = CH”i,j + ui+ I,j)12 - lIft”i+ 1,j + ui+2,j)12 

6X 

l t”i+2,j 

+Re [ 

+ ui,j j- 2ui+ 1,j) + C”i+ I,j+ I+ ui+ l,j- I- 2ui+ 1.j) 

6X2 6Y2 1 Q-6) 
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FV:,, 1 = $(“i,,+ui,j+l)(oi~I,j+l +“~,j+~~~~~ui+~,j+ui+I,j+~~~ui,j+l +Ui+l,]-L) 

6X 

+ C~~“i,j+ui,j+~~12~CS~ui,j+~+ui,j+2~12 
SY 

1 -se C 
(u r+ l,j+ 1 + uip I,]+ 1 - 2vi,j+ 1) + C”&,+2 + ut,~- 2ui,j+ I) 

6X2 6Y2 I3 (2.7) 

where 6x and 6y denote the dimensions of the cell. It is to be understood that all 
velocity values correspond to time t = ndt. 

The full finite difference form of Eqs. (2.3) and (2.4) becomes 

u’lf’ 
r+ 1J - ‘r+ I,j = I;,J:, 1,, + 

At 6X 

and 

while the compressibility condition, Eq. (2.5), has for its discrete version 

Uif 1,J - %,, ui,j+ 1 - u~,~ 

6x + sy 
= 0. 

(2.8) 

(2.10) 

The latter necessitates the introduction of fictitious computation cells. The 
velocity values at the fictitious nodes must be assigned not only to enforce the non- 
slip boundary condition but also must supply a compatible boundary condition for 
the pressure equation. To approximate the no-slip condition at the walls of the 
cavity, we require that the velocity values at the lictious nodes just outside the walls 
be of same magnitude, but of opposite sign, as their corresponding virtual images 
inside the boundary walls. The impermeable condition of the flow needs no 
recourse to the fictitious points outside the cavity, since, by nature of the mesh 
system employed, this condition is met as a boundary constraint. 

The fact that on the MAC grid one has L = DG, where L, D, G are the discrete 
Laplacian, divergence, and gradient, is important and allows us the use of fast 
direct Poisson solvers to calculate efficiently at each time step the adjusting pressure 
field. Our choice of a solver came from the NCAR FISHPACK Library. The use of 
iterative methods for many time steps (e.g., 0(104)) Poisson inversions would be 
prohibitive. The forward Euler marching scheme was chosen for its simplicity of 
formulation and execution. In advancing the pressure, we chose not to skip any 
time steps although in retrospect our studies indicate that this practice does not 
seem to significantly affect the dynamic evolution of the flow and therefore could be 
recommended when computing resources are limited. We also implemented an 
implicit method (built upon the trapezoid rule) which yielded very similar results. 
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The implicit scheme displayed no advantages over the forward Euler scheme. Its 
capability to allow for a larger time step was opposed by the necessity of inverting 
two Poisson equations. 

Criteria in choosing the time step increment At were taken, in part, from the 
standard constraints for models of diffusion-transport systems, and were augmented 
by empirical data. For example, the diffusion condition that, for the case in which 
6, = 6y, the ratio 4St/Re 6x2 not exceed some critical value K(Re) < 1 necessitates 
experimental knowledge about the Reynolds number in question in order to gain a 
priori approximations to K(Re). This knowledge was usually gained by running the 
flows on coarse grids. 

2.3. Incompressibility 

2.3.1. Pressure Boundary Conditions 

As indicated above, condition (2.2) is applied to (2.1) to yield the continuous 
pressure equations 

-Ap=V. [(V-V) J’J. (2.11) 

In discretized form the forward Euler marching scheme of the MAC method first 
advances in time the advection-diffusion component of the flow 

P+‘= V”+AtF(V), (2.12) 

where F( Vn) denotes -(V” * G) V” + (l/Re) L( V”), and V” is the velocity vector at 
time step n. The pressure held is then readjusted according to 

DG(p”+‘) = (At)-’ D( P+‘), (2.13) 

ensuring conservation of matter at the next time step, i.e., D( V + ‘) = 0. 
In Fig. 4 we assume zero divergence for the cell inside the cavity, and require that 

the divergence of the adjacent, outside cell also vanish. The third fictitious velocity 
value u’, heretofore undefined, may then be determined. In general, its value will be 
that of its virtual image u inside the cavity wall. Then application of the momentum 
equation (2.8) at the wall yields the Neumann boundary data for the pressure p’= 

"1 -"1 

m 

u *P u=o . P’ U' 

v2 -"2 

FIG. 4. Assignment of velocity and pressure values at fictitious nodes of right boundary wall. 
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p + (2u)/(6xRe). Similar results are obtained for the remaining possible con- 
figurations. 

2.3.2. Velocity Boundary Conditions and Helmholtz Decomposition 

As concerns the effect of the velocity boundary condition on incompressibility, 
and somewhat related to the discussion of boundary conditions in Gatski et al. [6], 
we would like to make here a general observation (see Gustafson and Halasi [lo]). 

Consider the Helmholtz decomposition of the intermediate velocity field p + ‘, as 
defined in Eq. (2.12), according to 

p+l=~+l+8;+1+8;+1, (2.14) 

where c+l and PI+’ are the curl-free and divergence-free components of p + ‘, 
respectively. The third component Q+ * . IS both curl-free and divergence-free. To 
obtain the desired incompressible flow vector I/“+’ a conservative force field, such 
as pressure gradient, is introduced. Thus v” + ’ = p + ’ - V(p” + ’ ) d t, and the vor- 
ticity is left unaffected. The three velocity fields defined by W;+ ’ = P + ’ - R+ ‘, 
,+l~p+l~p+l~7n+l 

2 - 1 3 3 
and p+‘= p+’ -V(p”+l) At all have the same 

vorticity, and all are divergence-free. 
This apparent dilemma of nonuniqueness is resolved by first considering the 

irrotational components of flow. Being curl-free, the component e+ 1 is therefore 
expressible as the gradient of some scalar field S, @ + ’ = VS, from which we obtain 

v2S=v~(~+‘)=AtV2p. 

The Newmann boundary condition for S is 
as 
ifG aa 

=n. p+1 
1 1x2. 

For general domains it is not clear what the values n * F + l, i = 1,2,3, should be at 
the boundary. However, by assuming impermeability at the boundary for the 
divergence-free components, e + 1 and @ + I only, we get 

as 
G an 

=n* Q+lIan=n* P+‘lan 

=n.F(V)“),, 

Thus S=pAt, and so W;+l= P+ ‘. Also, from the above assumptions on imper- 
meability at the boundary, we see that 

p+1=0 
3 

and so Wn+l= W”+‘= V”+l 
‘2 1 
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This analysis demonstrates that in order to resolve the uniqueness question for 
an incompressible flow simulation it is suffkient to impose an impermeability con- 
straint of the boundary on the divergence-free components only. 

2.3.3. Effect of Inexact Incompressibility 

Recall that the exact solution to the pressure equation 

DG(p” + ‘) = DF( V/n) 

ensured a divergence-free flow at time step n + 1. A relaxation of this incom- 
pressibility condition could be used as a means of reducing the costs of com- 
putation. For example, a scheme could be devised in which the pressure equation is 
not solved at every time step, but instead is solved at every mth time step, for some 
predetermined or variable m. Such schemes have been, in fact, used in certain flow 
simulations (see Gresho, Lee, and Sani [8]). 

To observe the effects of violating the incompressibility condition, we computed 
(see also Gustafson and Halasi [9]) the following perturbed pressure equation 

where u-(x, y) = CI * (x + y). Of interest was the range of a for which the perturbed 
flow still bore a resemblance to the corresponding divergence-free flow. Criteria 

TABLE II 

Effect of Pressure Equation Perturbation on Driven Cavity Flow at Time t= 1 Second, Re= 10 

w=a(x+y) D( V V &C KE P IlV”- v”+‘)/, 

a = 0.0 O(lO-‘1) (0.206,0.018) 130.7 O( -4.0) 0(10-S) 
a=0.04 O(lO-4) (0.206,0.018) 130.6 O( -4.0) O(lO-5) 
a = 0.40 0(10-3) (0.206,0.018) 130.7 O( -4.0) O(lO-5) 
a=200 0(10-l) (0.207,0.017) 130.8 O(-5.0) O(lO-6) 
a=4.00 0(10-Z) (0.208, 0.016) 131.1 0( - 6.0) 0(10-6) 

TABLE III 

Effect of Pressure Equation Perturbation on Driven Cavity Flow at Time t = 20 Seconds, Re = 400 

fir=a(x+y) 4 VI V &C KE P IIV”-- v”+l(lm 

a=O.O 
a=0.04 
a = 0.40 
a = 0.80 
a = 2.0 

0(10-l’) 0.104, 0.073) 144.3 O( -4.0) O(lO-4) 
0(10-Z) (0.105, 0.072) 144.3 O( -4.0) 0(10-4) 
O(lO-2) (0.114, 0.053) 144.6 O( - 4.0) O(lO-4) 
O(lO-‘) (0.124, -0.041) 144.7 O( -4.0) O(lO-4) 
O(lO-‘) (0.160, -0.007) 142.6 O( - 5.0) O(lO-4) 
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b 

FIG. 5. Incompressibility maintained, Re = 10, I = 1 s. (a) Normalized velocity field. (b) Kinetic 
energy contours, labels scaled by 10,000. (c) Normalized pressure gradient. (d) Normalized kinetic 
energy gradient. 

used in ascertaining flow resemblance included the geometry of the flow itself along 
with the geometries of the pressure gradient and kinetic energy distributions. Quan- 
titative features, such as total kinetic energy and Iocations of eddy centers, were 
also measured and compared. Flows of Reynolds numbers 10 and 400 were pertur- 
bed in this manner. In all cases, the region of flow was the unit cavity upon which 
was superimposed a uniform mesh of cell length l/40. In Tables II and III we 
exhibit some effects of these pressure equation perturbations. 
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FIG. 8. Incompressibility disrupted, Re = 400, t = 20 s, a = 0.04. (a) Normalized velocity field. (b) 
Kinetic energy contours, labels scaled by 10,000. (c) Normalized pressure gradient. (d) Normalized 
kinetic energy gradient. 

and ran the flow to t = 20 seconds, which, although not yet steady, is well 
developed. The (2, j) cells, i.e., the leftmost column of interior cells, did not con- 
serve mass, to an error of 0(10d3). Elsewhere in the interior mass was preserved to 
O( lo- ‘I). The center velocity V,., was (0.104,0.074), very close to the unperturbed 
case (see Table III). Similarly, global kinetic energy (144.2), global pressure 0( - 3), 
and convergence rate (0(10P4)) were close to those of the unperturbed flow. 
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b 

FIG. 9. Lower left corner detail. (a) Normalized velocity lield. (b) Kinetic energy contours, labels 
scaled by O.lE + 08. 

2.4. Enhancement by Kinetic Energy Portraits 

The use of kinetic energy contours and normalized kinetic energy gradient flows 
was investigated as an alternative way of isolating qualitative behavior patterns 
present in cavity flows. See, for example, Fig. 9, where, even though we detected a 
lower left corner tertiary eddy at relatively low Reynolds numbers (e.g.,Re = 400) 
and resolution (e.g., 150 x 150) from the velocity flow alone, much more detail is 
brought out by kinetic energy enhancement. 

FIG. 10. Lower right corner detail. (a) Kinetic 
malized velocity field. 

b 

energy contours, labels scaled by O.lE+ 10. (b) Nor- 
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FIG. 11. Transient kinetic energy feature observed during central vortex development. Re = 400 and 
time runs from t = 1.77 s to I = 4.02 s. Labels scaled by O.lE + 06. 

In the staggered mesh system used, the individual x and y components of the 
velocity field are segregated from each other. Thus, in order to graphically plot the 
velocity field it was therefore necessary to reassign the velocity components to a 
common point. This was achieved by averaging the y-component horizontally and 
the x-component vertically. In this manner, velocity vectors are defined at the cor- 
ners of the computational cells. From these values one obtains the kinetic energy 
contours and gradients. 

A liner vortex structure was revealed by the presence of two sites of relative high 
energy adjacent to the centers of the vortices. These neighboring local maximum 
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sites are more noticeable with the corner eddies, Figs. 9 and 10, than with the 
primary vortex, Fig. 2. Of particular note, from the kinetic energy gradient flow, 
e.g., Figs 5 and 7, one observes a ridge of local maximum energy partially 
surrounding the primary vortex. Kinetic energy portraits also reveal features such 
as the transient “quasi-vortex” shown in Fig. 11. As time runs on the forming cen- 
tral vortex splits, the left portion becoming the principal. The transient portion 
soon disappears completely. 

2.5. Enhancement by Pressure Characteristics 

In general, a pressure equation for the flow within any geometric configuration is 
obtained by applying the divergence operator to the Navier-Stokes equations. Since 
the flow is assumed incompressible we have 

In the absence of this nonlinear term (i.e., Stokes flows) there results, likewise, an 
absence of a density distribution for the conservative force field Vp. On the other 
hand, in non-Stokes flow regimes, the effect on the pressure gradient Vp is that it 
now is the result of superposing sinks and sources of density -V2p = 
V * [(V* V) V]. In Figs. 5 and 7 we observe the effects of this nonlinearity (or the 
lack of it) in the behavior of the pressure gradient field. 

t=zo s 

FIG. 12. Flow in cavity of aspect ratio A = 0.5, Re = 400 At t = 20 s I( V” - Vnm l/l 4, = O(lO-“). 
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(a) normalized pressure 
gradient 

(b) normalized kinetic 
energy gradient 

FIG. 13. Additional flow characteristics at 4 = 0.5, Re = 400. 

That similar sources are not associated with the secondary corner eddies can be 
explained by arguing that within such regions the characteristic velocities are 
relatively low. In such regions the effective Reynolds number will be lower. 
Similarly in deep cavities the pressure diagrams for the secondary principal vortices 
revealed no significant sources. See the figures in Section 3. Computationally this 
denigration of source might appear to be improperly enhanced by the mul- 
tiplication by small values of dt in (2.12) but this should be counterbalanced by the 
multiplication by (dt)-’ in (2.13). 
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b 

A=1.4 A-1.5 

A=1.4 

d 

A=1.5 

FIG. 14. Incomplete and nearly complete eddy fusion for Re = 100 at aspect ratios A = 1.4 (left) and 
A = 1.5 (right), respectively. Time t = 15 s. A = 1.4, kinetic energy contours, labels scaled by 10,ooO. 
A = 1.5, kinetic energy contours, labels scaled by O.lE+ 10. 
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t=lZ s, labels scaled t=40 s t=40 s. labels scaled 

by 10,000 by O.lE + 07 

FIG. 17. Velocity and kinetic energy features leading to eddy fusion for Re=SOO at aspect ratio 
A = 1.5. 

(a) The topology of the vortex formation, first the primary vortex and then 
only shortly afterward the secondary characteristics, develops almost immediately. 
The amplitudes develop much more slowly. One sees this much more rapid 
qualitative development even on relatively coarse meshes. 

(b) For aspect ratio 2, at moderate Reynolds numbers a wall eddy forms just 
before the downstream comer eddy does. Later there is a coalescence, originally 
between these two eddies, and then with the upstream corner eddy. We cannot be 



300 GUSTAFSON AND HALASI 

certain, due to resolution limitations, that the wall eddy is independent of some as 
yet unseen boundary layer connection from the separation point down to the cor- 
ner eddy. 

(c) Nonlinear Stokes flow (e.g., Re = 10-6) final states are attained by linear 
Stokes flow at higher Reynolds numbers (e.g., Re = 400) but the latter take much 
longer to develop to the same states. These flows are characterized by a much more 
symmetric normalized velocity although the pressure profiles are somewhat less 
symmetric. This tendency toward symmetry precludes the wall eddy formation. 

(d) All observed dynamic properties, e.g., principal vortex location and 
diameter evolution (a main object of the earlier steady investigations), secondary 
eddy sizes (a main object of more recent steady investigations), whether or not wall 
eddies form, and whether or not lower eddy coalescence is complete, are related in 
a functional dependence between the Reynolds number Re and the aspect ratio A. 

One misses many intricacies of the eddy dynamics until one goes to deeper 
cavities, e.g., A > 1.5 (at Re = 100, for example). First, however, for comparison to 
Gatski et al. [6], we consider in Section 3.1 the case of shallow cavities, i.e., A < 1. 
In Section 3.2 we view the transition to eddy coalescence for intermediate cavities, 
e.g., A = 1.4, 1.5, and 1.6. Then in Sections 3.3 and 3.4 we turn to deeper cavities 
and to more detailed studies of specific observed dynamic eddy structures. 

There is some lack of convention in the literature as to notation for the secon- 
dary eddies. We shall refer to the lower left corner eddy as the downstream, or first 
corner, eddy. The second, or right-hand corner, eddy will be referred to as the 
upstream eddy. 

3.1. Shallow Cavity Flows 

The dynamics to steady state of shallow cavity flow, A = 0.5, at Re = 400, were 
obtained in Gatski et al. [6]. In Figs. 12 and 13 we give our results for comparison 
to those of Gatski et al. Note that both here and in [6] the roles of the secondary 
corner eddies is reversed for A = 0.5, the dominant size and strength being shifted to 
the upstream eddy. This tendency is evident in the moderate Reynolds number 
range, but becomes increasingly less so as Re decreases to zero. Also of note is the 
large relative size of the primary vortex. This feature is shown, in particular, by the 
kinetic energy gradient field of the flow. 

32. Intermediate Cavity Flow 

Allowing the aspect ratio of the cavity to take on values larger than one presents 
further opportunities for secondary vortex behavior examination. This can be 
achieved, in general, without affecting the features of the primary vortex, as obser- 
ved by Kawaguti [13]. This same author noted, in particular, the existence of a 
secondary flow region near the bottom of the cavity of aspect ratio A = 2. Such 
secondary flows were absent in instances where A was less than unity. 
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t=12 s t=20 s 

FIG. 18. Evolution toward near steady flow for Re = 400 at aspect ratio A = 2.0. 
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t=6 s t=6.5 s 

FIG. 19. Vortex dynamics involving wall eddy and comer eddies with kinetic energy contours for 
Re = 400 at aspect ratio A = 2.0. 
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t=lO s, labels 
scaled by O.lE + 06 

t=8.5 s, labels 
scaled by O.lE + 06 
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FIG. 19-Continued. 
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Fro. 20. Development of wall eddy for Re = 800 at aspect ratio A = 2.0 
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FIG. 21. Absence and presence of wall eddy for different Reynolds numbers at aspect ratio A = 2.0. 
(a) Re = 100. time t = 6 S. (b) Rr = 200, time i = 6 S. 
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t = 1 x 10-g s t = 2 x 10-8 s t = 4 x 10-8 s 

t = 6 x lo-* s t = 10 x 10-B s t = 20 x 10-g s 

FIG. 22. Evolution of full nonlinear flow with Re = 10s6 at aspect ratio A = 2.0 
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Bozeman and Dalton [4] described these secondary regions of recirculation in 
terms of downstream corner eddy growth with increasing aspect ratio. At aspect 
ratio A = 2 they confirmed the Kawaguti finding of a secondary flow, which, 
however, is attributed to the growing downstream vortex occupying the entire 
lower region of the cavity. The Bozeman and Dalton studies include additional 
values of the aspect ratio in the intermediate range between one and two. Of par- 
ticular note was that a secondary recirculation flow had already formed with aspect 
ratio A = 1.6. At aspect ratio A = 1.4 no such flow was found. These investigations 
were carried out at Re = 100. 

For comparison of the unsteady limit of our dynamic analysis with the steady 
configuration found in Bozeman and Dalton, we ran the cases A = 1.4 and A = 1.5 
at Re = 100. See Fig. 14. Note the quite clear failure of coalescence in the case 
A = 1.4. On the other hand the case A = 1.5 can be regarded as nearly complete 
coalescence into a secondary region of flow. For A = 1.6 we obtain (Fig. 15) an 
unsteady limit in close agreement to the stationary computation of Bozeman and 
Dalton [4, Fig. 7d]. 

Observing the evolution of the time-dependent flow regime permits a greater 
understanding concerning the formation of the secondary region of recirculation 
and its Reynolds number dependence. Figures 15 and 16 compare flow at A = 1.6 
for Re = 100 and 800. For the latter, coalescence occurred more quickly and more 
completely. Figure 17 compares the flow at A = 1.5 for Re = 800 with the previous 
(Fig. 14) flow at Re = 100. Note the full coalescence at the higher Reynolds number. 

3.3. Secondary Eddy Separation and Coalescence 

As the aspect ratio of the cavity is further increased, additional dynamical infor- 
mation on basic eddy formation, growth, separation, and reintegration into the 
flow can be gained. We found that many of the fundamental mechanics may be seen 
at A = 2. Some observations on deeper cavities will be found in Sections 3.4 and 3.5, 
which will conclude the paper. 

An unforeseen dynamical characteristic was the formation of a wall eddy (see 
Fig. 18). This also appeared in the dynamics of intermediate depth cavities (see 
Fig. 16 and 17). This eddy then coalesces with the two corner eddies to form a 
secondary circulation. More dynamical detail is given in Fig. 19. Note how this 
third secondary eddy forms on the downstream wall of the cavity and grows 
downward at a rate faster than two corner eddies, eventually interfering, and then 
fusing, with them. 

Figure 20 demonstrates the wall effect as a function of Reynolds number, there 
Re = 800. Note how this wall eddy appears to develop prior to the downstream 
eddy. We observed this eddy for Re = 200 but it was not evident at Re = 100. 

A closer comparison, including kinetic energy profiles and pressure gradients, of 
the flows at Re= 100 and Re= 200 is given in Fig. 21. Note the relative insen- 
sitivity, mentioned earlier, of the pressure gradient for distinguishing two quite dif- 
ferent qualitative flows. 
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t=2s 
Pressure gradient 

t=16s 

FIG. 23. Normalized velocity, normalized pressure gradient, and kinetic energy contours for 
linearized flow of Re = 400 at aspect ratio A = 2.0. 
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t = 2 x 1o-8 s 

FIG. 24. Normalized velocity flow of linearized flow with Re= 10m6 at aspect ratio A = 2.0. 

t = 6 x 10-8 s t = 10 x 1o-8 s 
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The result of decreasing the Reynolds number to Re = 10e6 is shown in Fig. 22. 
Although in all three cases Re = 800, 400, and 10M6 a secondary recirculation sub- 
cavity eventually forms, the geometries of both the dynamic and the final con- 
figurations differ drastically. 

In the case of creeping (here Re = 10e6) flow, an almost symmetry is developed 
and maintained, throughout the time evolution, about the center line of the cavity. 
In particular the corner eddy sizes are nearly equal. At near steady state (20 x lop8 
seconds in Fig. 22) the relative sizes of the primary and secondary vortices of the 
creeping flow agree with those obtained by Pan and Acrivos for linear Stokes flow 
in a cavity of the same aspect ratio. 

It is of some interest to examine the relationship of low Reynolds number non- 
linear flow to linear flow dynamics at various Reynolds numbers. A comparison of 
Fig. 23 for linear Stokes flow at Re = 400 with Fig. 22 for creeping nonlinear flow 
shows that the linear flow dynamics approximates the creeping flow dynamics very 
well, although in a much dilated time frame. Figure 24 shows for further com- 
parison the results for linearized creeping flow of Re = 10-6. Note the excellent 
correspondence between Fig. 22 and Fig. 24. 

3.4. Deep Cavity Flows 

With increasing depth, secondary corner eddy behavior should begin to exhibit 
features of highly viscous flows, due, in part, to the much lower velocity prevalent 
in the lower confines of the cavity. The upper region, where the characteristic 
velocity is O(l), should preserve the features of the given global Reynolds number. 
These remarks are borne out by observing flow in cavities with A > 2. We restrict 
attention there to A = 4.0 although similar results were seen in the cases A = 5.0 and 
A = 6.0 that we ran. 

A history of the normalized velocity field for the driven cavity having Reynolds 
number Re = 400 and aspect ratio A = 4 can be followed in Fig. 25. Salient features 
include the compartmentalization of the cavity into three separate regions of recir- 
culation and the binary origin, due to fusing of the corner eddies, of all but the 
second down subregion of circulation. At 60 seconds the three subregions had for- 
med, but a ‘final state is not achieved until 150 seconds. For a creeping flow case 
Re= lop6 at aspect ratio A =4.0, see Fig. 26. For this case a “final” state was 
achieved at t = 18 x lo-‘. These “final” states miss, of course, line corner detail. 

3.5. Flow Dynamics at Higher Reynolds Numbers 

At the behest of one of the referees, we computed the flow dynamics at the higher 
Reynolds number Re = 2000. See Fig. 27. The vortex dynamics is similar to that at 
Re = 400 and Re = 800 although the tendency for the second primary vortex, once 
formed, to shift to the right is more pronounced. This causes the right corner secon- 
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FIG. 25. Evolution of deep cavity flow (A =4.0) of Reynolds number Re =400. At 150 s the 
maximum norm between successive time steps of the velocity field, i.e., 11 V” - V”- * 11 m, is 0(10-l’). 
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FIG. 25-Continued. 
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FIG. 25-Continued. 
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FIG. 27. Dynamics and final state of flow (A =2) at Reynolds number Re =2000. Time step 
dr=0.003, at 180s jIV”- P-‘/l, is O(lO-‘). 
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dary eddy to also be more pronounced. The use of suitably small time steps, e.g., 
At = 0.003 on a 40 x 80 grid, precluded any numerical instabilities. The trade-off 
between further reduction of the time step to accommodate both higher-resolution 
grids and larger Reynolds numbers would depend on machine resources available, 
and would eventually be limited by machine accuracy. 
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